

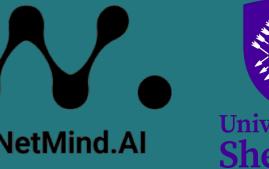
UNIVERSITY OF

CAMBRIDGE

Rubrik's Cube: Testing a New Rubric for Evaluation Explanations on the CUBE dataset

Diana Galvan-Sosa¹*, Gabrielle Gaudeau¹*, Pride Kavumba², Yunmeng Li³, Hongyi Gu⁵, Zheng Yuan⁶, Keisuke Sakaguchi^{3,4}, Paula Buttery¹

¹ALTA Institute, Computer Laboratory, University of Cambridge | ²SB Intuitions | ³Tohoku University | ⁴RIKEN ⁵ NetMind.AI | ⁶ The University of Sheffield ★Equal contribution | Contact: {dg693, gjg34}@cam.ac.uk



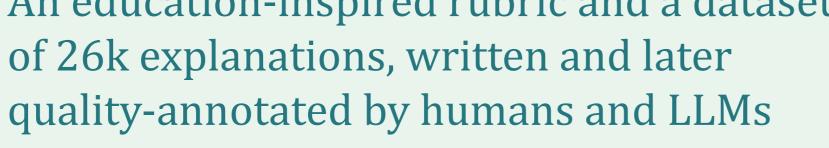
Overview

★ Goal:

Allow for a more systematic evaluation of an explanation's quality

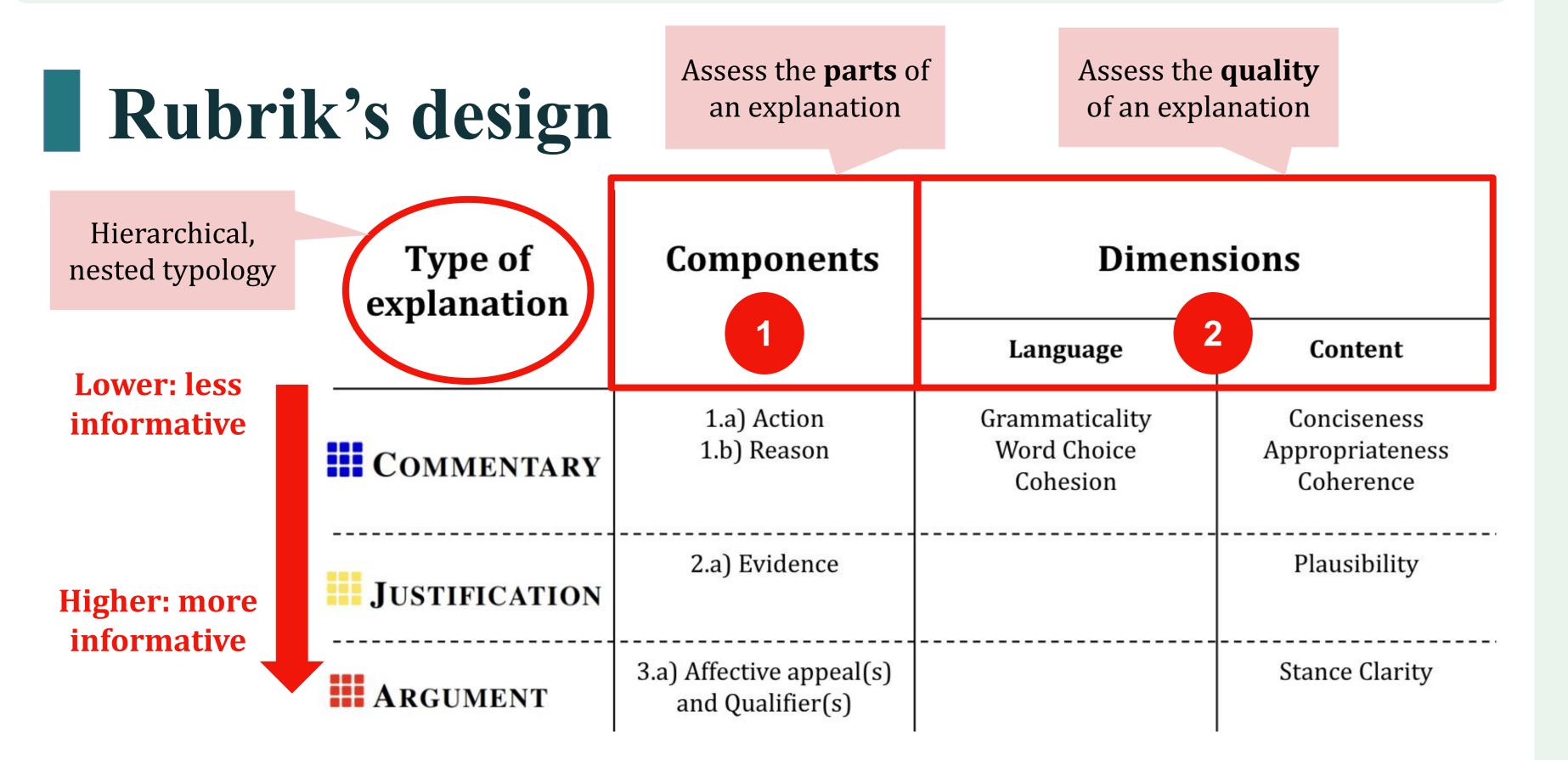
★ Contributions:

An education-inspired rubric and a dataset



Scoring strategy

- **★ Step 1:** Define the context
 - What is the task?, Who is the target audience?
- **★ Step 2:** Assess <u>completeness</u>, starting with **COMMENTARY**
 - Check if all **Components** of the type are met
 - If \checkmark yes \rightarrow Continue to Step 3
 - \circ If **X** no \rightarrow Stop evaluation



Rubrik's validation \rightarrow **CUBE**

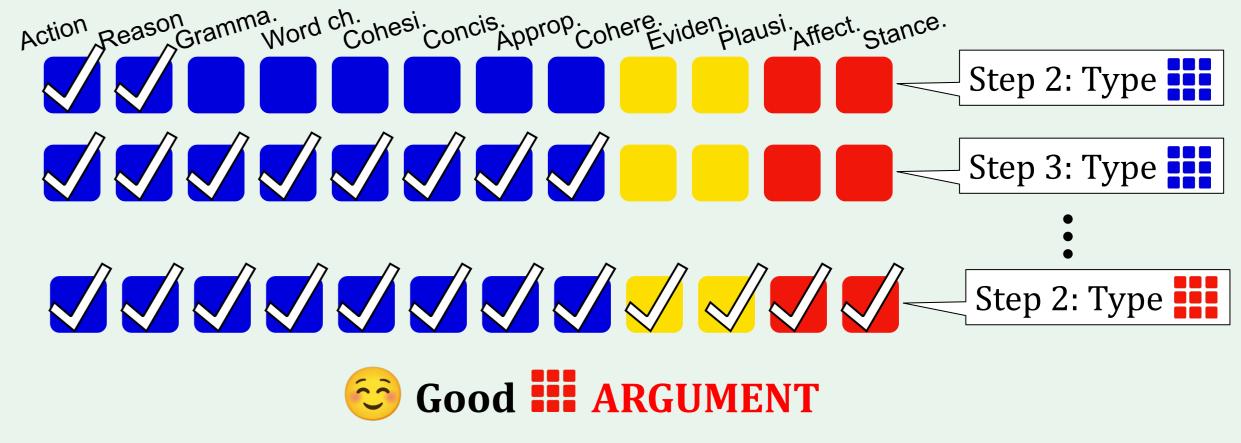
Data	
Collection	

- **1. C**ommonsense reasoning (HellaSwag)
- **2.** Usual fallacy detection (LOGIC)
- **3. B**asic reading comprehension (RACE)

- **★ Step 3:** Assess <u>quality</u>
 - Check if all **Dimensions** of the type are met
 - If \checkmark yes \rightarrow Move to higher type and go back to Step 2
 - \circ If **X** no \rightarrow Stop evaluation

EXAMPLE 1

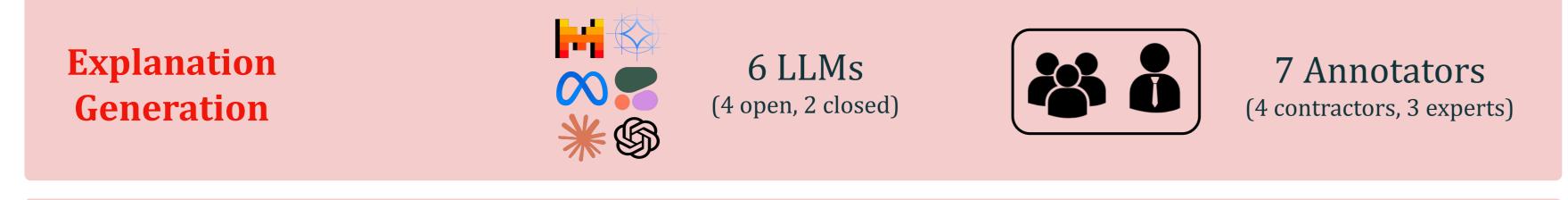
[context] essay scoring (task); academic audience [explanation] "The right answer is A, because this text is clearly of a low english level, with mis-conjugations of 'i do a research' and 'this are findings', alongside 'our litters' and 'whenever' instead of 'wherever' show a poor grasp of language. The expression in the final section is very **heartfelt** however, and the tone is **excitable** and keen throughout."



EXAMPLE 2

[context] commonsense reasoning (task); academic audience **[explanation]** "The answer is D because the sentence mentions that **she** explains how to use the lawnmower and other tools, and then she cuts the grass. Option D accurately reflects this sequence of events."

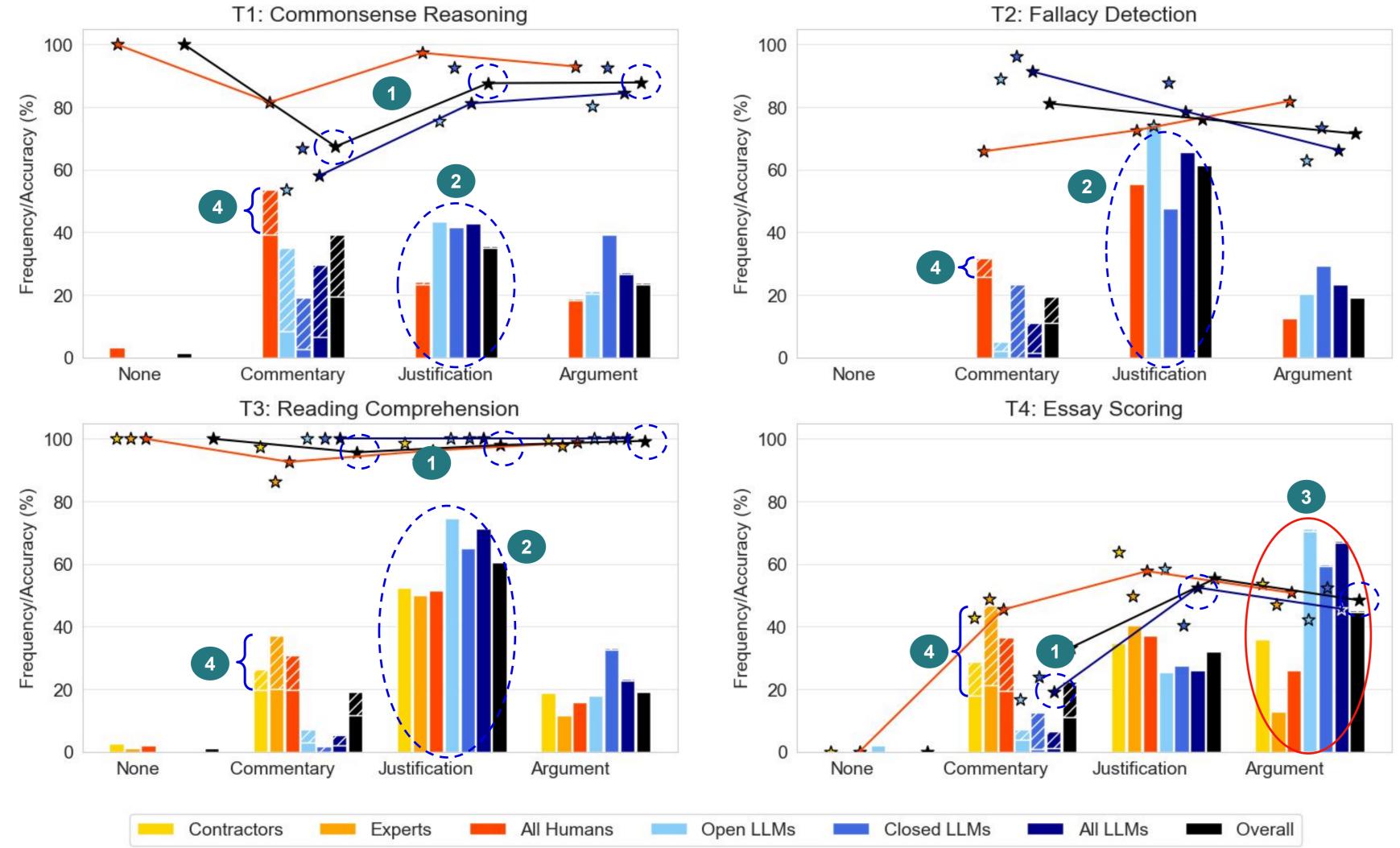
4. Essay scoring (Write & Improve (BEA'19))

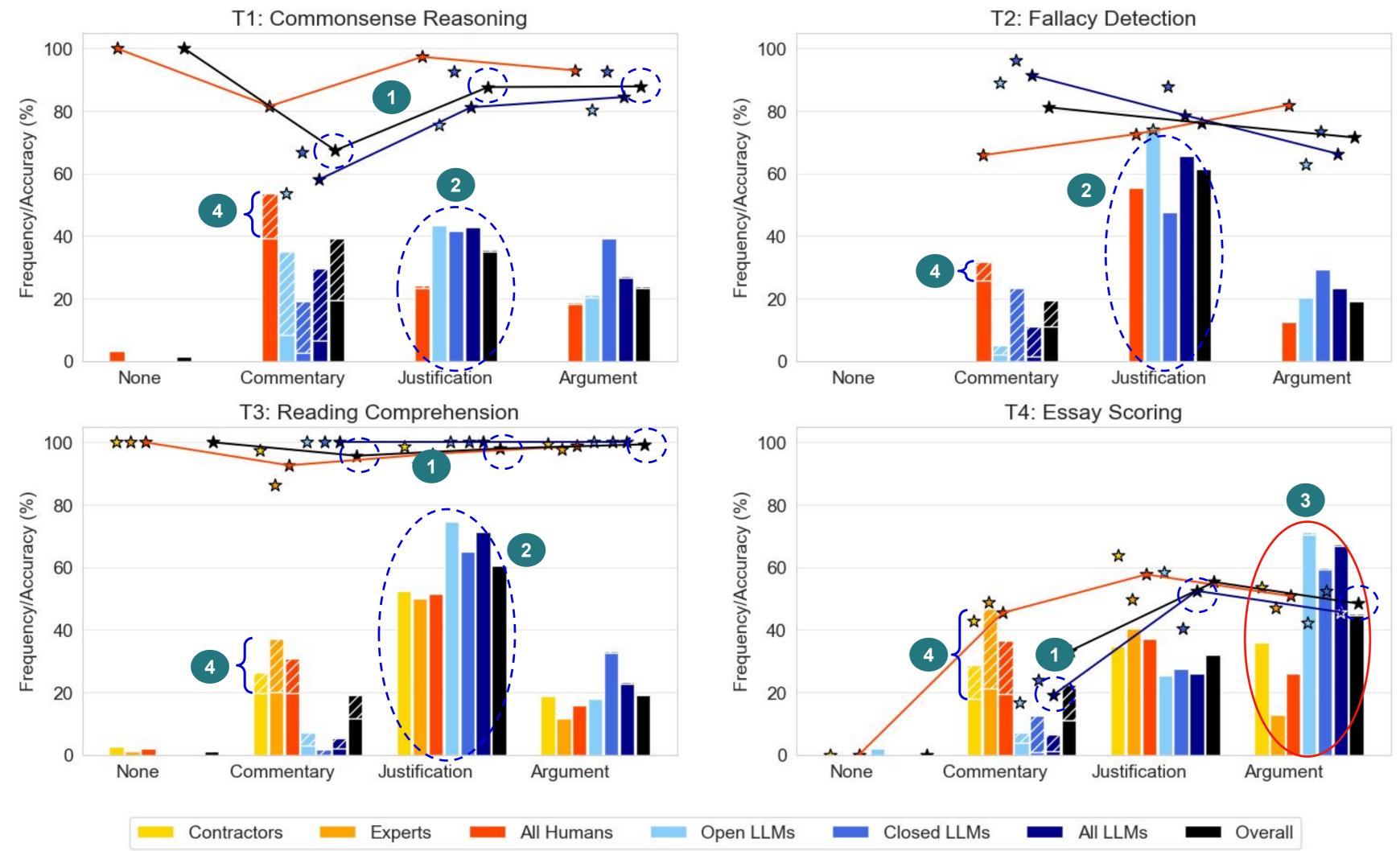


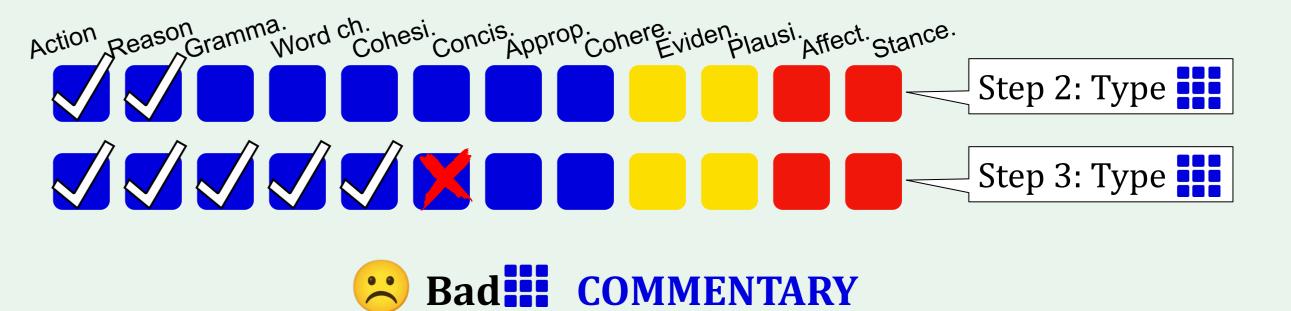
Explanation Assessment

Freq. and quality of explanation types

• Lower accuracy is associated with the lowest type: annotators tended to generate a "Commentary" when their answers were incorrect and "Justifications" when they were correct.







Source of bad explanations

- **★ LLMs**: Low quality stems primarily from a lack of <u>conciseness</u>.
- **★ Humans**: Low quality stems primarily from a lack of <u>coherence</u>.
- **★ Experts vs. Contractors**: Low quality stems primarily from grammaticality and <u>coherence</u>, respectively.

40 20 0

Open LLMs Closed LLMs Experts Overall Contractors

2 Both LLMs and humans tend to write "Justifications".

³ Explanation type seems to be correlated with the subjectivity of the task. T4, the hardest task, had a higher proportion of "Arguments".

• The number of bad explanations was low and concentrated in "Commentaries" across tasks.

The 63rd Annual Meeting of the Association for Computational Linguistics (July 29, 2025)